Academics wade into the DEEP end of emergency response

The World Food Programme (WFP) is working with leading experts to take machine learning to new limits.

By Emma Wadland

When disaster strikes, a single drone or satellite image can paint a thousand words but convey little about the individual lives turned upside down or the emergency response they need most.

Until recently, analysing the damage to buildings or infrastructure could take weeks and was carried out later in the response. Now, a machine learning application known as Digital Engine for Emergency Photo-analysis (DEEP) is accelerating the process.

“This is the best part of my job. WFP is not a technology firm. We use tech for people, not profit. This is the most important rule that drives me during this research,” says Marco Codastefano, Data Science Specialist in WFP’s Technology Division.

Even when it’s offline, the application can scour aerial imagery to assess damage to buildings within hours. It improves planning around health, food and shelter, and replaces foot or helicopter assessment, which cuts both risks and costs.

Rosalie Triste, who is 47 years old, points out the areas of damages in her home in Catanduanes, Philippines on 15 December 2020, following the devastating effects of Typhoon Goni.
Rosalie Triste, who is 47 years old, points out the areas of damages in her home in Catanduanes, Philippines on 15 December 2020, following the devastating effects of Typhoon Goni.
Rosalie Triste, who is 47 years old, points out the areas of damages in her home in San Miguel, Catanduanes, on 15 December 2020. WFP is providing support to local communities in Catanduanes, Philippines, following the devastating effects of Typhoon Goni. Photo: WFP/Arete/Angelo Mendoza.

As the first organization to use this machine learning model in emergency situations, WFP deployed it in Mozambique in 2019 and then in Colombia, the Philippines and Lebanon in 2020. But, as Marco explains, this is a rapidly evolving field. “If we want to use technology to save lives and change lives, we need a strong relationship with academia,” he says.

Marco has begun forging research pathways, including with the Polytechnic University of Turin. One of their first actions was to confirm that DEEP could also be applied to satellite images (consider that a good satellite image is 50 pixels per cm compared to 4 or 6 pixels per cm for drone images). This avoids the need to wait for drone equipment and pilots to reach the disaster zone, which is particularly important given pandemic travel restrictions.

“The collaboration between our university and WFP will bring interesting outcomes, both in the field of international cooperation, and locally, in the framework of the activities carried out by Italian first responders,” says Filiberto Chiabrando, Associate Professor of Geomatics at Polytechnic.

However, teaching a model to predict new information is time-consuming. So, Marco and Polytechnic will soon publish their research on training a model like DEEP to identify five damage cases instead of two in the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences.

A satellite image shows damage to houses after an earthquake. Photos: Polytechnic of Turin and WFP.
The DEEP application indicates the spectrum of damage to the houses starting with red (destroyed), dark pink (very heavy damage), light pink (substantial to heavy damage), off-white (moderate damage) and white (undamaged). Photos: Polytechnic of Turin and WFP.

“This technology is a necessary step towards better emergency response, not only in our country, but at a global level. It will allow us to gain crucial information for humanitarian frameworks,” says Alessio Calantropio, a researcher at Polytechnic working closely with Marco.

The German Space Agency (DLR) is also helping improve DEEP’s ability to detect buildings and expand it to include roads. This is a chance “to make geo-information from remote sensing data more usable for humanitarian relief missions,” says Nina Merkel, a Research Associate with DLR. “Working with organizations like WFP helps us develop and adapt our methods.”

“DEEP started with damage assessment but could extend to natural hazard predictions and conflict analysis,” says Lara Prades, Head of the Geospatial Unit in WFP’s Emergency Division. That idea inspired her team’s collaboration with the University of Washington in the United States to find new ways of understanding the link between conflict, food insecurity and climate change.

Academics don’t need to be persuaded to help fight hunger. “WFP has an enormous reputation,” Marco says. “Our collaboration starts with the first email.”

The WFP Innovation Accelerator sources, supports and scales high-potential solutions to end hunger worldwide. We provide WFP staff, entrepreneurs, start-ups, companies and non-governmental organizations with access to funding, mentorship, hands-on support and WFP operations.

Find out more about us: http://innovation.wfp.org. Subscribe to our e-newsletter. Follow us on Twitter and LinkedIn and watch our videos on YouTube.

Sourcing, supporting and scaling high-impact innovations to disrupt hunger.